
On Frequency Weighting for the H. and H2 Control Design

of Flexible Structures

.

W. Gawronski*

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

and

K. B. Lim#

NASA Langley Research Center, Hampton, VA

f

“Jet Propulsion Laboratory, California Institute of Technology, M.S. 238-528, Pasadena,CA91109, U.S.A.,
wodek.k.gawronski@jpl. nasa.gov
‘ NASA Langley Research Center, Hampton, VA 23665, U.S.A., k.b.lim@larc.nasa.gov

1



.

Introduction

The H@and the related H2 controller design methodologies allow for the design of

control systems that meet tracking requirements and, at the same time, maintain the

binding disturbance rejection properties. In order to achieve this, the problem should be

appropriately defined in the quantitative terms. For example, the frequency shaping filters

are used to define tracking requirements, or disturbance rejection performance of the

closed-loop system. These frequency dependent weights filters are used only in the

controller design stage. They add to the complexity of the problem, since in the process of

design the number of system equations varies and their parameters are modified. As it is

stated by Voth et al. In Ref. 1, p.55, “The selection of the controller gains and filters as well

as the controller architecture is an iterative, and often tedious, process which relies heavily

on the designers’ experience.” It is shown in this paper that this task is simplified in the

case of flexible structure control. If a structure model is in the modal representation, then

the addition of a filter is equivalent to the multiplication of each row of the plant input

matrix by a constant. The ith constant is the filter gain at the ith natural frequency of the

structure. In this way each natural mode is weighted separately. This approach addresses

the system performance at the mode level, which simplifies otherwise may be ad hoc and

tedious process,

Properties of Flexible Structures and Filters

We assume that a flexible structure is in the modal representation. Its transfer fiction

G has the state space representation (’)B, C), with n degrees of freedom (or number of

flexible structure modes), 2n states, p inputs, and q outputs. Denote Oi the ith natural

frequency, and ~ the ith modal damping, i=l, ....n, We assume low damping (~. <0.1 for

all modes), and distinct natural frequencies. In the modal representation the system matrix

A is block diagonal with 2x2 blocks on the diagonal, and B, C are divided into 2 x p and

q x 2 blocks, see Ref.2, pp. 12-14
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where i=l, ....n, Denote the transfer function of the ith mode as G, = C,(jo] – A,)-1B,,

then, one obtains the following decomposition of transfer function in modal coordinates

a) G(o)= ~Gi(co) b) G(CDi)SGi(coi), i=l,..,,n (2)
j=]

Part (a) can be derived by introducing A, B, and C as in Eq.(1) to the definition of the

transfer function. Part (b) follows from Part (a), by noting that the response at frequency

Oi is dominated by the ith mode, that is, Gj (o, ) ~ << GI(oi ) ~ for i~”.

Consider a filter, with a diagonal transfer function F(o). The diagonal input (output)

filter represents lack of coupling between the inputs (or outputs). Denote a, the magnitude

of the filter response at the ith natural frequency, ai = lF(~j )1.Filter is smooth if the slope

of its transfer fimction near the structural resonance is small when compared to the slope of

the structure near the resonance. With the above assumptions the following property of the

Ha norm of a structure with a filter is valid

In order to prove part (a), note that

(3)

(4a)
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Both approximations in the above equation hold because resonance response of the ith

mode dominates the structural response, as given in Eq.(2). However, since

llGill@s ti(Gi (oj )), therefore (3), part (a) is valid. In order to prove (b) note that for the

smooth F the transfer function GF preserves the properties of a flexible structure given by

Eq.(2), thus

(4b)

.

In the above approximation we took into consideration the fact that c, (GF) = a, (Gl~),

which can be proven as follows

Eq.(3) says that the largest modal peak response of a lightly damped structure determines

the worst case response. Similar property holds for the 2-norm of a structure with a filter ~

a) llGll~s ~llGill~ and b) llGFll~z ~llG,czi II:
i= 1 i= 1

(5)

Eq.(5) says that the rms response of a lightly damped structure is approximately an rms

sum of responses of each mode. Also, a norm of a smooth filter in series with a flexible

structure is approximately equal to the norm of a structure scaled by the filter gains at

natural frequencies. Note that similar result to Eq.(5) holds for a structure with a filter at

the output.

Approximate Frequency Weighting

In controller design the inputs of the plant transfer function are separated into two

groups: the exogenous input w (that includes commands and disturbances), and the actuator

input u, The system outputs consists of the performance output z, at which performance is
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evaluated, and the sensed output y. The H@(HJ control problem consists of determining

the stabilizing controller transfer function K such that the H@ (Hz) norm of the closed-loop

transfer function G, from w to z, is minimized over all realizable controllers K.

Frequency weighting of the exogenous inputs and performance outputs is a standard

approach in the Ho (HJ design to define the required closed-loop properties, (see for

example Ref.3). In this case a plant is augmented with the input and/or output shaping

filters, forming an augmented plant model. Consider, for example, input shaping. Denote F

the transfer fi.mction of the input filter, and assume that it is smooth. The transfer function

from w to z with the input filter is GF’.The inputs of G are shaped independently, therefore

the filter transfer fiction matrix is square and diagonal.

Introduce the transfer fimction ~ = ~ d, where di = C,(joJ – Ai)-1~i and ii = Biai.
/=1

Above, ~ is a transfer fhnction Gi with the scaled input matrix Bi. We will show that the

H@norms of both transfer fi.mctionare approximately equal.

(6)

Equation (6) shows that the application of the input filter for the H@performance

modeling is equivalent to the scaling of the 2 x p input matrix B, with a,, where ai is

the magnitude of the filter transfer fiction at the resonant frequency Oi. For the H.

output filter one obtains

l/FG/\@~ ll~llm

where ~ = ~ ~i , ~i = ~i(jai - A,)-’ Bi, and
i-l

(7)

Ci=aiCi.
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For the H2 controller the 2-norm of the transfer function GF is used as a system

performance measure. We assume that the flexible structure is represented in the modal

coordinates, and for the input filter we obtain.

(8)

We prove it using Eq.(5) obtaining l[GFl]~~ ~ Giai ~ = ~ 6, ~ = d ~.
i=l i=l

Equation (8) shows that the application of the input filter for the H2 performance

modeling is equivalent to the scaling of the 2 x p modal input matrix B, with ai, For the

H2 output filter one obtains

(9)

Note that Eqs.(6)-(9) preserve the order and the physical interpretation of the transfer .

fbnction, and the corresponding state variables. This simplifies the controller clesign

process, since the relationship between the filter gains and the system perfommnce is

readily available.

Example

Consider a steel truss as in Fig. 1. For this truss

is 1 cn~2.The disturbance w is applied at node

measured at node 21, z direction; the input u is applied at node 20 in z direction, and the

11=lOcm, 12= 8 cm, cross section area

7 in z direction, the performance z is

output y is a displacement of node 28, z direction. The open-loop transfer function from the

disturbance to the performance is shown in Fig.2, solid line. The disturbance input is

filtered with a low-pass filter, F(s)= 1/(1+ 0.011s), the magnitude of its transfer fimction

is shown in the same figure, dot-dashed line. The resulting thnsfer function of the structure

and the filter is represented by the dotted line. The equivalent structure with filter was

obtained by scaling the disturbance input, according to Eq.(6), and the magnitude of its
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transfer function is shown in Fig.2, dashed line. It is clear from that figure that the structure

with the filter, and the structure with the scaled disturbance input have very similar

frequency characteristics, and their norms are llGl]~= 2.6903, IIG112= 453.2945 for the

structure with the filter, and llGll~= 2,6911, IIGII1= 453.5661 for the structure with the

scaled disturbance input.

Two frequency weighted H@controllers for this structure were designed. The first one is

based on the structure with a filter, while the second is based on the structure with scaled

input matrix, The open- closed-loop transfer functions are shown in Fig.3. The closed loop

performance of the structure with the filter, and with the scaled input is almost identical.

The closed-loop

filter, and GC,~

H. norms are as follows: GC, ~ = 0.09681 for the structure with the

= 0.09676 for the structure with the scaled disturbance input. In a similar

manner H2 controllers were designed. The closed-loop H2 norms are as follows:

IIG II~, ~ = 108.6295 for the structure with the filter, and GC, ~= 108.7181 for the structure

with the scaled disturbance input.

Conclusions

It has been shown that for flexible structures the frequency shaping of the system

properties with input (output) filters is equivalent to the scaling the modal input (output)

matrix of the plant. This approach simplifies controller design process. Instead of

introducing new state variables, one modifies the gains of the modal input matrix. This is

possible since the modal states related to the gains are weaMy coupled, such that the

modification of one state (or one gain) weakly influence the others. In addition, physical

interpretation of the states remains unchanged and is related to the corresponding gains.
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